top of page

SCI Journals

  1. Subnanometer Cu clusters on porous Ag enhancing ethanol production in electrochemical CO2 reduction
    Park, J.; Jeong, C.; Na, M.; Oh, Y.; Lee, K.; Yang, Y. S.*; Byon, H. R.*
    ACS Catal. 2024, 14, 3198–3207 DOI

     

  2. Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Non-Aqueous Organic Redox Flow Batteries
    Ahn, S.; Son, M.; Singh, V.; Yun, A; Baik, M. H.*; Byon, H. R.* († equally contributed to this work)
    J. Am. Chem. Soc. 2024, 146, 4521–4531 DOI

     

  3. Identifying the Active Sites and Intermediates on Copper Surfaces for Electrochemical Nitrate Reduction to Ammonia
    Kim, Y.†; Ko, J.†; Shim, M.; Park, J.; Shin, H. -h.; Kim, Z. H.; Jung, Y.*; Byon, H. R.*
    Chem. Sci. 2024, 15, 2578-2585 DOI

     

  4. Solubility and Stability of Redox-Active Organic Molecules in Redox Flow Batteries
    Singh, V.; Byon, H. R.*
    ACS Appl. Energy Mater. 2023, Just accepted DOI

     

  5. Layered Transition Metal Oxide (LTMO) for Oxygen Evolution Reactions and Aqueous Li-ion Batteries
    Kim, Y.; Choi, E.; Kim, S.; Byon, H. R.*
    Chem. Sci. 2023, 14, 10644-10663 DOI

     

  6. Fluorinated Ether-based Co-solvent Electrolytes for Lithium-Metal Batteries: High Ionic Conductivity and Suppressed Dissolution of Fragmented Anions
    Kim, L.; Jang, T.; Byon, H. R.*(† equally contributed to this work)
    J. Power Sources 2023, 30, 233237 DOI

     

  7. Correlating Nanoscale Structure with Electrochemical Property of Solid Electrolyte Interphases in Solid-State Battery Electrodes 
    Oh, J.; Park, G.; Kim, H.; Kim, S.; Shin, D. O.; Kim, K. M.; Byon, H. R.; Lee, Y.-G.; Hong, S.*
    ACS Appl. Mater. Interfaces 2023, 15, 26660-26669 DOI

     

  8. Anion-Induced Interfacial Liquid Layers on LiCoO2 in Salt-in-Water Lithium-Ion Batteries
    Oh, H.; Shin, S.-J.; Choi, E.; Yamagishi, H.; Ohta, T.; Yabuuchi, N.; Jung, H.-G.; Kim, H.*; Byon, H. R.* 
    († equally contributed to this work)
    JACS Au. 2023, 3, 1392 - 1402 DOI

     

  9. Catalytic Boosting on AuCu Bimettalic Nanoparticles by Oxygen-Induced Atomic Restructuring
    Kim, T. -S.; Choi, H.; Kim. D.; Song, H. C.; Oh Y.; Jeong, B.; Lee, J.; Kim, K. -J.; Shin, J. W.; Byon, H. R.; Ryoo, R.; Kim, H. Y.*; Park, J. Y.*
    Appl. Catal. B: Environ. 2023, 331, 122704  DOI

     

  10. Zn Glutarate Protective Layers In Situ Form on Zn Anodes for Zn Redox Flow Batteries
    Na, M.; Singh, V.; Choi, R. H.; Kim, B. G.; Byon, H. R.*
    Energy Storage Mater. 2023, 57, 195-204  DOI

     

  11. Controlling π–π Interactions of Highly Soluble Naphthalene Diimide Derivatives for Neutral pH Aqueous Redox Flow Batteries
    Singh, V.;  Kwon, S.; Choi, Y.; Ahn, S.; Kang, G.; Yi, Y.; Lim, M. H.; Seo, J.*; Baik, M. H.*; Byon. H. R.* 
    († equally contributed to this work)
    Adv. Mater. 2023, 35, 2210859 DOI

     

  12. Low-Temperature CO2-Assisted Lithium-Oxygen Batteries for Improved Stability of Peroxodicarbonate and Excellent Cyclability
    Kang, J. -H.; Park, J.; Na, M.; Choi, R. H.; Byon, H. R.*
    ACS Energy Lett. 2022, 7, 4248-4257 DOI

     

  13. Ammonium-Functionalized Naphthalene Diimide as Two-Electron-Transfer Negolyte for Aqueous Redox Flow Batteries
    Singh, V.; Ahn, S.; Byon, H. R.*
    Batteries & Supercaps 2022, 5, e202200281 DOI

     

  14. Designing Fluorine-Free Electrolytes for Stable Sodium Metal Anodes and High-Power Seawater Batteries via SEI Reconstruction
    Kim, J.; Kim, J.; Jeong, J.; Park, J.; Park, C.; Park, S.; Lim, S.; Lee, K.; Choi, N.; Byon, H. R.; Jo, C.*; Lee, J.*
    Energy Environ. Sci. 2022, 15, 4109-4118 DOI

     

  15. Unexpectedly Large Contribution of Oxygen to Charge Compensation Triggered by Structural Disordering: Detailed Experimental and Theoretical Study on a Li3NbO4–NiO Binary System
    Fukuma, R., Harada, M., Zhao, W., Sawamura, M., Noda, Y., Nakayama, M., Goto, M., Kan, D., Shimakawa, Y., Yonemura, M., Ikeda, M., Watanuki, R., H. L. Andersen, A. M. D’Angelo, Sharma, N., Park, J., Byon, H. R., Fukuyama, S., Han, Z., Fukumitsu, H.,  M. S. Dobrick, Yamanaka, K., Yamagishi, H., Ohta, T., and Yabuuchi, N.*
    ACS Cent. Sci. 2022, 8, 775-794 DOI

     

  16. Alteration of Oxygen Evolution Mechanisms in Layered LiCoO2 Structures by Intercalation of Alkali Metal Ions
    Kim, Y.; Kim, S.; Shim, M.; Oh, Y.; Lee, K. S.; Jung, Y.; Byon, H. R.*
    J. Mater. Chem. A 2022, 10, 10967-10978 DOI

     

  17. Machine Learning Assisted Synthesis of Lithium-Ion Batteries Cathode Materials
    Liow, C. H.; Kang, H.; Kim, S.; Na, M.; Lee, Y.; Baucour, A.; Bang, K.; Shim, Y.; Choe, J.; Hwang, G.; Cho, S.; Park, G.; Yeom, J.; Agar, J. C.; Yuk, J. M.; Shin, J.; Lee, H. M.; Byon, H. R.; Hong, S.*
    Nano Energy 2022, 98, 107214 DOI

     

  18. Systematic Designs of Dicationic Heteroaryl Pyridiniums as Negolytes for Non-Aqueous Redox Flow Batteries
    Ahn, S.†; Jang, J. H.†; Kang, J.; Na, M.; Seo, J.; Singh, V.; Joo, J. M.*; Byon, H. R.*(† equally contributed to this work)
    ACS Energy Lett. 2021, 6, 3390-3397 DOI

     

  19. Sodium Fluoride-Rich Solid Electrolyte Interphase for Sodium-Metal and Sodium-Oxygen Batteries
    Kim, S.†; Jung, Y.†; Park, J.; Hong, M.; Byon. H. R.* († equally contributed to this work)
    Bull. Korean Chem. Soc. 2021, 42, 1519-1523 DOI

     

  20. Advances in Electrochemical Energy Storage with Covalent Organic Frameworks
    Singh, V.*; Byon, H. R.*
    Mater. Adv. 2021, 2, 3188-3212 DOI

     

  21. Coverage of Capping Ligands Determining Selectivity of Multi-Carbon Products and Morphological Evolution of Cu Nanocatalysts in Electrochemical Reduction of CO2
    Oh, Y.; Park, J.; Kim, Y.; Shim, M.; Kim, T. -S.; Park, J. Y.; Byon, H. R.*
    J. Mater. Chem. A 2021, 9, 11210-11218 DOI

     

  22. Understanding the Interfacial Reactions of LiCoO2 Positive Electrodes in Aqueous Lithium-Ion Batteries
    Oh, H.; Yamagishi, H.; Ohta, T.; Byon, H. R.* 
    Mater, Chem. Front 2021, 5, 3657-3663 DOI

     

  23. Thiazole-Linked Covalent Organic Framework Promoting Fast Two-Electron Transfer for Lithium-Organic Batteries
    Singh, V.†; Kim, J.†; Kang, B.; Moon, J.; Kim, S.; Kim, W. Y.*; Byon, H. R.* († equally contributed to this work)
    Adv. Energy Mater. 2021, 11, 2003735 DOI

     

  24. Nanometer-Scaled Surface Roughness of a 3-D Cu Substrate Promoting Li Nucleation in Li-metal Batteries
    Jang, T.; Kang, J. -H.; Kim, S.; Shim, M.; Lee, J.; Song, J.; Kim, W. K.; Ryu, K. H.; Byon, H. R.*
    ACS Appl. Energy Mater. 2021, 4, 2644-2651 DOI

     

  25. Tubular MoSSe/Carbon Nanotube Electrodes for Hybrid-Ion Capacitors
    Kim, Y.†; Kim, S.†; Hong, M.; Byon. H. R.* († equally contributed to this work)
    Electrochim. Acta 2021, 374, 137971 DOI

     

  26. Reducing Time to Discovery: Materials and Molecular Modeling, Informatics, and Integration
    Hong, S.*; Liow, C. H.; Yuk, J. M.; Byon, H. R.; Yang, Y.; Cho, E.; Yeom, J.; Park, G.; Kang, H.; Kim, S.; Shim, Y.; Na, M.; Jeong, C.; Lee, Y.; Baucour, A.; Bang, K.; Kim, M.; Yun, S.; Ryu, J.; Han, Y.; Jetybayeva, A.; Choi, P. -P.; Agar, J. C.; Kalinin, S. V.; Voorhees, P. W.; Littlewood, P.; and Lee, H. M.
    ACS Nano 2021, 15, 3971-3995 DOI

     

  27. Singlet Oxygen in Lithium-Oxygen Batteries
    Hong, M.*; Byon, H. R.*
    Batteries & Supercaps 2021, 4, 286-293 DOI

     

  28. Nanostructured LiMnO2 with Li3PO4 Integrated at Atomic Scale for High-Energy Electrode Materials with Reversible Anionic Redox
    Sawamura, M.; Kobayakawa, S.; Kikkawa, J.; Sharma, N.; Goonetilleke, D.; Rawal, A.; Shimada, N.; Yamamoto, K.; Yamamoto, R.; Whou, Y.; Uchimoto, Y.; Nakanishi, K.; Mitsuhara, K.; Ohara, K.; Park, J.; Byon, H. R.; Koga, H.; Okoshi, M.; Ohta, T.; Yabuuchi, N.*
    ACS Cent. Sci. 2020, 6, 2326-2338 DOI

     

  29. One-Pot Production of Ceria Nanosheets-Supported PtNi Alloy Nanodendrites with High Catalytic Performance Toward Methanol Oxidation and Oxygen Reduction
    Kwon, Y.; Kim, Y.; Hong. J. W.; Whang, Y.; Kim S.; Wi, D. H.; Byon, H. R.; Han, S. W.*
    J. Mater. Chem. A 2020, 8, 25842-25849 DOI

     

  30. Lithium-Air Batteries: Air-Breathing Challenges and Perspective
    Kang, J.-H.†; Lee, J.†; Jung, J.-W.†; Park, J.; Jang, T.; Kim, H.-S., Nam, J. S.; Lim, H.; Yoon, K.R.; Ryu, W.-H.; Kim,I.-D.*; Byon, H.R.* († equally contributed to this work)
    Invited review for 50th anniversary of KAIST
    ACS Nano 2020, 14, 14549-14578 DOI

     

  31. Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite (HOPG) in Water-in-Salt Electrolyte
    Kim, Y.†; Hong, M.†; Oh, H.; Kim, Y.; Suyama, H.; Nakanishi, S.; Byon, H. R.* († equally contributed to this work)
    J. Phys. Chem. C 2020, 124, 20135-20142 DOI

     

  32. Zn2+ and H+ Association with Naphthalene Diimide Electrodes for Aqueous Zn-Ion Batteries
    Na, M.; Oh, Y.; Byon. H. R.*
    Chem. Mater. 2020, 32, 6990-6997 DOI

     

  33. Promoting Lithium Electrodeposition Towards the Bottom of 3-D Copper Meshes in Lithium-Based Batteries
    Kim, S.; Kim, Y.; Nguten, C. T.; Jang, T.; Lee, H. -B. -R.; Byon. H. R*
    J. Power Sources 2020, 472, 2284951 DOI

     

  34. Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium-Oxygen Batteries
    Kwak, W.-J.†; Park, J.†; Kim, H.†; Joo, J. M.: Aurbach, D.*; Byon, H. R.*; Sun, Y. -K.*  († equally contributed to this work)
    ACS Energy Lett. 2020, 5, 2122 DOI

     

  35. Naphthalene Diimide as a Two-Electron Anolyte for Aqueous and Neutral pH Redox Flow Batteries
    Medabalmi, V.; Sundararajan, M.; Singh, V.; Baik, M. H.*; Byon, H. R.*
    J. Mater. Chem. A 2020, 8, 11218-11223  DOI

     

  36. Synthesis of Redox-Active Phenanthrene-Fused Heteroarenes by Palladium-Catalyzed C–H Annulation
    Jang, J.H.; Ahn, S.; Park, S. E.; Kim, S.; Byon, H. R.*; Joo, J. M.*
    Org. Lett. 2020, 22, 1280-1285 DOI

     

  37. Mechanistic Study Revealing the Role of the Br3ˉ/Br Redox Couple in CO-Assisted Li–O Batteries
    Marques Mota, F.; Kang, J.-H.; Jung, Y.; Park, J.; Na, M.; Kim, D. H.*; Byon, H. R.*
    Adv. Energy Mater. 2020, 10, 1903486 DOI

     

  38. Charge Compensation Mechanism of Lithium-Excess Metal Oxides with Different Covalent and Ionic Characters Revealed by Operando Soft and Hard X-ray Absorption Spectroscopy
    Yamamoto, K.*; Zhou, Y.; Yabuuchi, N.; Nakanishi, K.; Yoshinari, T.; Kobayashi, T.; Kobayashi, Y.; Yamamoto, R.; Watanabe, A.; Orikasa, Y.; Tsuruta, K.; Park, J.; Byon, H. R.; Tamenori, Y.; Ohta, T.; Uchimoto, Y.
    Chem. Mater. 2020, 32, 139-147 DOI

     

  39. Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium-Oxygen Batteries
    Kwak, W. -J.; Freunberger, S. A.; Kim, H.; Park, J.; Nguyen, T. T.; Jung, H. -G.; Byon, H. R.; Sun, Y. -K.*
    ACS Catal. 2019, 9, 9914-9922 DOI

     

  40. Aqueous Organic Redox Flow Batteries
    Singh, V.†; Kim, S.†; Kang, J.; Byon, H. R.* († equally contributed to this work)
    (invited review for Special Issue of Young Innovators in Nano Energy)
    Nano Res. 2019, 12, 1988-2001 DOI

     

  41. Triple Hierarchical Porous Carbon Spheres as Effective Cathodes for Li–O Batteries
    Jeong, M. -G.; Kwak, W. -J.; Islam, M.; Park, J.; Byon, H. R.; Jang, M.; Sun, Y. -K.*; and Jung, H. -G.*
    J. Electrochem. Soc. 2019, 166, A455-A463 DOI

     

  42. Trapping of Stable [4n+1] π‐electron Species from Peripherally Substituted, Conformationally Rigid, Antiaromatic Hexaphyrins
    Firmansyah, D.; Hong, S. J.; He, Q.; Bae, J.; Dutta, R.; Jo, H.; Kim, H.; OK, K. M.; Lynch, V.;
    Byon, H. R.*; Sessler, J.*; Lee, C. -H*
    Chem. Eur. J. 2019, 25, 3525 –3531 DOI

     

  43. Dendrite- and Oxygen-Proof Protective Layer for Lithium Metal in Lithium-Oxygen Batteries
    Kwak, W. -J.;  Park, J.;  Nguyen, T. T.; Kim, H.;  Byon, H. R.;  Jang, M.; Sun, Y. -K.*
    J. Mater. Chem. A 20197, 3857-3862 DOI

     

  44. Instability of a noncrystalline NaO film in Na–O batteries: the controversial effect of the RuO catalyst
    Tovini, M. F.; Hong, M.; Park, J.; Demirtaş, M.; Toffoli, D.; Ustunel, H.; Byon, H. R.; Yılmaz, E.*
    J. Phys. Chem. C 2018, 122, 19678–19686 DOI

     

  45. Determining the facile routes for oxygen evolution reaction by in situ probing of Li-O cells with conformal LiO₂ films
    Hong, M.;Yang, C.; Wong, R. A.; Nakao, A.; Choi, H. C*.; Byon, H. R.*
    J. Am. Chem. Soc. 2018, 140, 6190-6193 DOI

     

  46. Critically Examining the Role of Nanocatalysts in Li-O Batteries: Viability towards Suppression of Recharge Overpotential, Rechargeability and Cyclability
    Wong, R. A.†; Yang, C.†; Dutta, A.; O, M.; Hong, M.; Thomas, M. L.; Yamanaka, K.; Ohta, T.; Waki, K.; Byon, H. R.* († equally contributed to this work)
    ACS Energy Lett. 2018, 3, 592-597  DOI

     

  47. Designing Redox-Stable Cobalt-Polypyridyl Complexes for Redox Flow Batteries: Spin Crossover Delocalizes Excess Charge
    Yang, C.†; Nikiforidis, G.†; Park, J. Y.; Choi, J.; Luo, Y.; Zhang, L.; Wang, S.-C.; Chan, Y.-T.; Lim, J.; Hou, Z.*; Baik, M.-H.*; Lee, Y.*; Byon, H. R.* († equally contributed to this work)
    Adv. Energy Mater. 2018, 8, 1702897 DOI

     

  48. Nanostructuring One-Dimensional and Amorphous Lithium Peroxide for High Round-Trip Efficiency in Lithium-Oxygen Batteries
    Dutta, A.; Wong, R. A.; Park, W.; Yamanaka, K.; Ohta, T.; Jung, Y.*; Byon, H. R.*
    Nat. Commun. 2018, 9, 680 DOI 

     

  49. Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li-O₂ Batteries
    Yoon, K. R.; Shin, K.; Park, J.; Cho, S.-H.; Kim, C.; Jung, J.-W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I.-D.*
    ACS Nano 2018, 12, 128-139 DOI                                                                                                                                                                                                                                                                 

  50. Structurally Tuning LiO by Controlling the Surface Properties of Carbon Electrodes: Implications for Li-O Batteries
    Wong, R. A.; Dutta, A.; Yang, C.; Yamanaka, K.; Ohta, T.; Nakao, A.; Waki, K.; Byon, H. R.*
    Chem. Mater. 201628, 8006-8015 DOI

     

  51. High Energy Efficiency and Stability for Photo-Assisted Aqueous Lithium-Iodine Redox Batteries
    Nikiforidis, G.; Tajima, K.; Byon, H. R*

    ACS Energy Lett. 2016, 1, 806-813. DOI

  52. Unexpected Li₂O₂ Film Growth on Carbon Nanotube Electrodes with CeO₂ Nanoparticles in Li–O₂ Batteries
    Yang, C.; Wong, R. A.; Hong, M.; Yamanaka, K.; Ohta, T.; Byon, H. R* 
    Nano Lett. 2016, 16, 2969-2974. DOI

     

  53. Sulfur-Based Catholyte Solution with Glass-Ceramic Membrane for Li-S Batteries
    Wang, L.; Zhao, Y.; Thomas, L. M.; Dutta, A.; Byon, H. R*
    ChemElectroChem 2015, 3, 152-157. DOI
                                         

  54. A Chemistry and Material Perspective on Lithium Redox Flow Batteries Towards High-Density Electrical Energy Storage
    Zhao, Y.; Ding, Y.; Li, Y.; Peng, L.; Byon, H. R.; Goodenough, J. B.; Yu, G.* 
    Chem. Soc. Rev. 201544, 7968-7996. DOI

     

  55. Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li-O₂ Battery
    Hong, M.; Choi, H. C.*; Byon, H. R.* 
    Chem. Mater. 201527, 2234-2241. DOI
                             

  56. Perfluorinataed Moiety-Grafted Carbon Nanotube Electrode for the Non-Aqueous Lithium-Oxygen Battery 
    Thomas, L. M. ; Yamanaka, K.; Ohta, T.; Byon, H. R.* 
    Chem. Commun. 201551, 3977-3980. DOI
    -selected as INSIDE FRONT COVER PICTURE DOI
                     

  57. An Aqueous Lithium-Iodine Battery with Solid Polymer Electrolyte-Coated Metallic Lithium Anode 
    Zhao, Y.; Mercier, B. N.; Byon, H. R.* 
    ChemPlusChem. 201580, 344-348. DOI 
    -Invited paper for the special issue on metal-air and redox flow batteries
                                                   

  58. A Structured Three-Dimensional Polymer Electrolyte with Enlarged Active Reaction Zone for Li-O₂ Batteries 
    Mercier, B. N.; Wong, R. A.; Thomas, L. M. ; Dutta, A.; Yamanaka, K.; Yogi, C.; Ohta, T.; Byon, H. R.* 
    Sci. Rep. 2014, 4, 7127. DOI 
                                     

  59. A 3.5 V lithium-Iodine Hybrid Redox Battery with Vertically Aligned Carbon Nanotube Current Collector 
    Zhao, Y.†; Hong, M.†; Mercier, B. N.; Yu, G.; Choi, H. C.; Byon, H. R.* († equally contributed to this work)
    Nano Lett. 201414, 1085-1092. DOI
                                                   

  60. In Situ Monitoring of Li-O₂ Electrochemical Reaction on Nanoporous Gold using Electrochemical AFM
    Wen, R.; Byon, H. R.* 
    Chem. Commun. 201450, 2628-2631. DOI
                                       

  61. In Situ Synthesis of Bipyramidal Sulfur with 3D Carbon Nanotube Framework for Lithium-Sulfur Batteries
    Wang, L.; Zhao, Y.; Thomas, L. M.; Byon, H. R.* 
    Adv. Funct. Mater. 201424, 2248-2252. DOI 
                                           

  62. High-Performance Lithium-Iodine Flow Battery 
    Zhao, Y; Byon, H. R.* 
    Adv. Energy Mater. 20133, 1630-1635. DOI
    -selected as COVER PICTURE DOI
                             

  63. Promoting Formation of Noncrystalline Li₂O₂ in Li-O₂ Battery with RuO₂ Nanoparticles
    Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R.*  
    Nano Lett. 201313, 4679-4684. DOI
    -RIKEN News: Ruthenium oxide nanoparticles improve Li-O₂ battery efficiency (link)
    -RIKEN Research: Nanotechnology gives a boost to next-generation batteries (link
                                          

  64. In situ AFM Imaging of Li-O₂ Electrochemical Reaction on HOPG with Ether-based Electrolyte
    Wen, R.; Hong, M.; Byon, H. R.*  
    J. Am. Chem. Soc. 2013135, 10870-10876. DOI
    -RIKEN News: Real-time Li-O₂ reaction process visualized for the first time (link)
    -RIKEN Research: A nanoscale glimpse of batteries in action (link)
                                             

  65. High-Performance Rechargeable Lithium-Iodine Batteries using Triiodide/Iodide Redox Couples in an Aqueous Cathode
    Zhao, Y; Wang, L.; Byon, H. R.*  
    Nat. Commun. 20134,1896. DOI
    -RIKEN News: High-performance lithium-iodine battery developed (link)
    -RIKEN Research: For better batteries, just add water (link
    -Green Car Congress: RIKEN team develops high-performance lithium- iodine battery system with higher energy than conventional Li-ion   (link
    -Industrial Minerals: Watered up: aqueous iodine doubles Li-ion battery density (link
                                                     

  66. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide-Based Organic Electrolyte for High Performance Lithium-Sulfur Batteries
    Wang, L.; Byon, H. R.* 
    J. Power Sources 2013236, 207-214. DOI 
                                   

  67. Role of Oxygen Functional Groups in Carbon Nanotube/Grphene Freestanding Electrodes for High Performance Lithium Batteries 
    Byon, H. R.†; Gallant, B. †; Lee, S. W.; Shao-Horn, Y. († equally contributed to this work)
    Adv. Funct. Mater. 201323, 1037-1045. DOI 
                  

  68. Real-time XRD studies of Li-O₂ electrochemical reaction in nonaqueous lithium-oxygen battery 
    Lim, H.; Yilmaz, E.; Byon, H. R.*

    J. Phys. Chem. Lett. 20123, 3210-3215. DOI
        

  69. Fe-N-Modified Multi-Walled Carbon Nanotube for Oxygen Reduction Reaction in Acid
    Byon, H. R.; Suntivich, J.; Crumlin, E. J.; Shao-Horn, Y.

    Phys. Chem. Chem. Phys. 2011,13, 21437-21445. DOI
                                    

  70. Graphene-Based Non-Noble-Metal Catalysts for Oxygen Reduction Reaction in Acid
    Byon, H. R.; Suntivich, J.; Shao-Horn, Y.

    Chem. Mater. 201123, 3421-3428. DOI
                                       

  71. Nanostructured Carbon-Based Electrodes: Bridging the Gap Between Thin-Film Lithium-Ion Batteries and Electrochemical Capacitors 
    Lee, S. W.; Gallant, B.; Byon, H. R.; Hammond, P. T.; Shao-Horn, Y.

    Energy Environ. Sci. 20114, 114-130. DOI
                                   

  72. Thin Films of Carbon Nanotubes and Chemically Reduced Graphenes for Electrochemical Micro-Capacitors 
    Byon, H. R.; Lee, S. W.; Chen, S.; Hammond, P. T.; Shao-Horn, Y.

    Carbon  201149, 457-467. DOI
                                                  

  73. Recognition of Single Mismatched DNA using MutS-Immobilized Carbon Nanotube-Field Effect Transistor Device
    Kim, S.; Kim, T. G.; Byon, H. R.; Shin, H. -J.; Ban, C.; Choi, H. C.

    J. Phys. Chem. B 2009113, 12164-12168. DOI
     

  74. Silencing of Metallic single Walled Carbon Nanotubes via Spontaneous Hydrosilylation
    Lee, Y. M.; Jeon, K. –S.; Lim, H.; Shin, H. S.; Jin, S. M.; Byon, H. R.; Suh, Y. D.; Choi, H. C.

    Small 20095, 1398-1402. DOI
     

  75. Label-Free Biomolecular Detection using Carbon Nanotube Field-Effect Transistors
    Byon, H. R.; Kim, S.; Choi, H. C.

    Nano 20083, 415-431. DOI  
     

  76. Direct Formation of SiO₂ Nanoholes Via Iron Nanoparticle-Induced Carbothermal Reduction
    Byon, H. R.; Chung, B.; Chang, T.; Choi, H. C. “

    Chem. Mater. 200820, 6600-6605. DOI
     

  77. Polymeric Ruler : Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Ssing Plasmonic Fluorescence Enhancement 
    Chi, Y. S.; Byon, H. R.; Lee, B. S.; Kong, B.; Choi, H. C.; Choi, I. S.

    Adv. Funct. Mater. 200818, 3395-3402. DOI
     

  78. Mobile Iron Nanoparticle and its Role in the Formation of SiO₂ Nanotrench via Carbon Nanotube Guided Carbothermal Reduction
    Byon, H. R.; Choi, H. C.

    Nano Lett. 20088, 178-182. DOI <Research Highlight>
                                 

  79. A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process
    Byon, H. R.; Lim, H.; Song, H. J.; Choi, H. C.

    Bull. Korean Chem. Soc. 200728, 2056-2060. DOI
     

  80. A Non-Covalent Approach to the Construction of Tween20-Based Protein Microarrays 
    Chi, Y. S.; Byon, H. R.; Choi, H. C.; Choi, I. S.

    ChemBioChem. 20078, 1380-1387. DOI
     

  81. Direct Precursor Conversion Reaction for Densely Packed Ag2S Nanocrystal Films
    Tang, Q.; Song, H. J.; Byon, H. R.; Yang, H. J.; Choi, H. C.

    Langmuir  200723, 2800-2804. DOI
     

  82. Carbon Nanotube Guided Formation of Silicon Oxide Nanotrenches
    Byon, H. R.; Choi, H. C.

    Nature Nanotech. 20072, 162-166. DOI
                       

  83. Selective Degradation of Chemical Bonds: from Single-Source Molecular Precursors to Metallic Ag and Semiconducting Ag₂S Nanocrystals via Instant Thermal Activation
    Tang, Q.; Yoon, S. M.; Yang, H. J.; Lee, Y.; Song, H. J.; Byon, H. R.; Choi, H. C.

    Langmuir 200622, 2802-2805. DOI
     

  84. Network Single Walled Carbon Nanotube Field Effect Transistors (SWNT-FETs) with Increased Schottky Contact Area for Highly Sensitive Biosensor Applications
    Byon, H. R.; Choi, H. C.

    J. Am. Chem. Soc. 2006128, 2188-2189. DOI
     

  85. Pseudo 3D Single Walled Carbon Nanotubes for BSA-Free Protein Chip
    Byon, H. R.; Hong, B. J.; Gho, Y. S.; Park. J. W.; Choi, H. C. 
    ChemBioChem. 20056, 1331-133. DOI

bottom of page